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Abstract

Isosurface extraction is a common analysis and visualization technique for three-dimen sional
scalar data. Marching Cubes is the most commonly-used algorithm for finding polygonal rep-
rescntations of isosurfaces in such data. We extend Marching Cubes to produce geometry for
data sets thatlie in spherical and cylindrical coordinate systemns as well as show the steps for
derivation of trausformations for other coordinate systems. Such data sets arc very comon

in the physical sciences, and display withintheir natural coordinate system aids visualization
considerably.

Introduction

Scalar data distributed over a three-dimensional rectangular space is a common type of science
data set. Such data sets arc often analyzed by finding isosurfaces in the data and rendering them
as Sets of polygons. A common and fairly fast algorithm to extract such isosurfaces is “Marching
Cubes” [1].Improvements to the algorithm have been made by several researchers [2, 3].

Many data scts are distributed over non-rectangular spaces; two very commonly used spaces are.
spherical and cylindrical (polar) coordinates. These are especially comnon inthe physical sciences.

This work was motivated by the need for a multiprojection interactive isosurface visual ization
tool as part of the LinkWinds[4] (Linked Windows Interactive Data System) software. Currently
being developed under NASA sponsorship,it isaninteractive data exploration and visualization
environment for quickly detecting trends, anomalics, and correlations.

Background

“Marching Cubes>' treats data as a set of voxels,each of which has eight data points as its corners.
Within cach voxel, a set of triangles represents the isosurface should it pass through the voxel.
These polygons are shaded by picking at each vertex of the triangle a normal in the direction of’
the gradient of a continuous scalar field inferred from and interpolating the original data. Since
the triangles’ endpoints need not lie on the original gridpoints, the authors suggest using linear
interpolation of gradients at the gridpoints to determine a conti nuous gradient. Experience shows
that this approach is adequate for most displays. This approach is coordinate-indepe ndent, but
without transformation produces isosurfaces in rectangular coordinates.

Motivation

Some scientific data, while regularly gridded, is mecasured on a grid that is not in rectangular
coordinates. Inparticular, Earth and astronomical observations arc usually takenin spherical



coordinates. If the scale of the data is sinall, rectangular coordinates is a good approximation. If it
is Jarge, that leads to distortions, masking features which might be prominentinthe data’s natural
coordinate system.Science data sets arc also occasionally scenin cylindrical coordinates; Earth
data sets taken over a hemisphere are often most helpful displayed i1 apolar map projection.

Inorder to produce isosurfaces of data in cylindrical or spherical coordinate systems, we have
chosen to use Marching Cubes within the data’s coordinate system. We later transforin the resulting
geonelry into the display’s rectangular coordinates, enabling an analyst to view isosurfacesina
variety of mnative coordinate systems.

Marching Cubesin Polar Coordinates

Yor position vectors, this is straightforward. Forcylindrical coordinates, we use.

' = p(r)cos(0) (1)
y = p(r) sin(0) (2)
PARES (3)

where cylindrical coordinates are represented as usual by (r,0,2)? and rectangular coordinatesare
represented as (Z, y', 2)7. p(r) is some transformation onr used to produce a map. We usually
usc either p(r) = cos(r) or p(r) = /7. Since all vectors arc going to be column vectors (and
thus post-multiply tile various inatrices described below) we shall henceforth be lazy and omit the
express trausposc.

Transforming normals, however, is somewhat less straightforward. Normal vectors transform
as theinverse transpose of the Jacobian of the coordinate transformation. Moreover, gradients in
polar coordinates are not identical 1o those inrectangular coordinates; they are
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This is not much different from the ordinary gradientinrectangular coordinates, but the 1 /7 term
matters.

Vel = (

The Jacobian of tile coordinate transformation above is
p' c.es(d) --psin(€) O
J(C) = p' sin(8) p cos(d) O (5)
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where p' is dp(r)/0r.
The inverse transpose of gtlgis Jagogi i’
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To produce anormal vector incylindrical coordinates one therefore must do the following three
steps:

1. Compute the partial derivatives inthe data’s native coordinate system, that is, ¢ mpute
a1 af af
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2. Compute the gradient in eylindrical coordinates, using equation 4, which is just mnul iplying
the 6 component by1/r.
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3. Transform to rectangular coordinates using cquation 6.
This produces the following equations for normal vectors
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Marching Cubes in Spherical Coordinates

Using Marching Cubes in spherical coordinates is similar to using polar coordinates | put, of course,
all the transformations are diflerent and much messicr. We use the spherical coordinate system
components (7,0, ¢).

The transformation of position vectors we chioose to be

' = rcos(8)sin(¢) (|0)
vy = rsin(#)sin(¢) (12)
2 = rcos(¢). (12)

The gradient in spherical coordinates is
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The Jacobian of the coordinate transformation is

cos(@)sin(¢) —r sin(f) sin(¢) r cos(@) cos(¢)
J(S) = sin(@)sin(@) rcos()sin(¢) rsin(f)cos(¢h) (14)
[ cos(¢) 0 - rsin(¢)

The inverse transpose of the Jacobian is

cos(@) sin(¢g) -2 S'l—:’lég)) 1 cos(0) cos(0) cos(¢)
(JHT(8) = sin(0) sin(¢) 2 Zf::((d% 1 sin(0) cos(0) cos(¢) | - (15)
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This produces the normal vector transformation
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Computational Issues

The main problem with these expressions occurs at poles where each geometric point maps one-to-
many to data points. If the data set is good, thenthe many data points will be equivalent, butin
practice, that is often not the case.

Inpolar coordinates, onecannot evaluate normals at the pole because of tile Ur term. Either
pick one of the data normals and rotate it into the appropriate position or just use “up, ” (0,0,1)

Inspherical coordinates, the problems aresimilar. 1f 7= O, the data mapping is many-to-one.
No normalmakes sense inthis case, so either pick one(perhapsup)or avoid the centralpoint of the
sphere. At the North and South poles, sin(¢)=: O and we get another divide by zero. Again, wc have
a many-to-one mapping of data to geometry,anda similar solutionto the oneused for cylindrical
coordinates can be used. For the South pole, up:- (O, O, --1 ). Alternatively, one could just not
evaluate exactly at the poles; pick spots some small distance away and something reasonable will
be produced.

Examples

The data set usedin them figures was measured by the Microwave Limb Sounder, launched aboard
the Upper Atmosphiere Research Satellite (U ARS)[5). It is a global map of the density of ozone in
the Earth’s atmosphere, and thus is a natural candidate for display in spherical coordinates.

The figures were created using the LinkWinds data visualization system. See
hitp://twinky jplnasa.gov/ for more informationon LinkWinds, including how to get a free copy.

Figures 1, 2,and 3 show isosurfaces of ozone concentrationinthe Bartl’s atmosphere at a
contour level of 5.478 ppm. Figure 1 is in rectangular coordinates, Figure 2 is in cylindrical
coordinates (with the South pole at the center)and Figure 3 is inspherical coordinates. Figure 4
is a set of isosurfaces a different contour levels, set inspherical coordinates.

The circular region right ncar the South pole is one in which no data was measured. The
paisley-shaped feature extending up from the South pole is the ozone hole.
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